唒plexus
\longrightarrow AGE OF

MACHINES
INTELLIGENT ECOLOGIES

AD6 / AH6

ADAPTIVE HABITATS

Enveloped by, and located within an ever evolving 'ephemeral context', the architectural object faces constant stress due to the tangible and intangible shifts. Within this 'hyper flux' field, experienced more so in the contemporary urban agglomerations, Adaptive Habitats 6 (AD6) furthers the disciplinary quest concerned with architecture that 'adapts' to environment, to inhabitants, to objects within them; through human intervention or automated induction.

UNIT 01

TRANS_FORMER

Acknowledging a temporal shift that has been necessitated by the rise of the ecological argument, Trans_Former Unit aims to extend the analogy of machine, to 'adaptive' mechanisms, and places a pedagogical case for rethinking architectural assemblage as a Trans_Former. Typologically Hybrid Networked Ecologies.
i_PLEXUS is an archetype of a transformable, adaptive accessibility hybrid. It forms the larger agenda of Trans_former \& Adaptive Habitats by keeping up with the modern culture of maximum flexibility and mobility. i_PLEXUS is an AI driven hybrid ecology that uses Golf Course Road's urban fabric for its successful functioning through numerous arteries. The networking of intelligent and intuitive arteries is how access and integration of various programmes is achieved.

As i PLEXUS is the product of the urban fabric of the Golf Course Road, it caters to going back to its roots and accomplishes maximum efficiency by restoring a water body that further facilitates the step farming on site which bring us closer to Gurugram's culture of organic agriculture. i_PLEXUS aims to advance and progress with simpler solutions for a creating a flexible vertical city made by its very own density - an Adaptive \& Ecological Vertical Hybrid Ecology which works as a networked city and has a symbiotic relationship with its environment.

TRANS_FORMER UNIT TRAJECTORY

Methodologically, Unit 01 seeks a speculative quest into an inclusive, symbiotic, more experiential, and healthier built habitat through careful observation, informed research and derivative extractions from study of nature, its systems, energies, resources and rhythms.
.

1. 1
 The Aravalli Region

■:
Location
Physical
Characteristics
Topography / Strata
Vegetation / Flora
Broad Climate
Parameters Influencing Regional Climate Composite Climate

1. 2

Golf Course Road
(GCR)
Microanalysis
Location
Physical
Characteristics Grey Morphosis
Green Morphosis
Blue Morphosis
MicroClimate
Solar /Radiation Analysis
Precipitation Analysis
Wind Pattern Analysis
Links
Physical Accessibility Analysis Visual Accessibility Analysis Aural Accessibility Analysis
Demographic Evolution Macro Demographics Micro Demographics GCR

Pandemic


```
5.1
PARAMETRIC
DERIVATION
Methodology 
    Morientationn
Accessibility-
Physical, Visual
Mhysical, Visu
Age+x-factor z
programmoctor
O
Program
Natural System
Finalform
!
Site PIan
6. 2
Other floor Plans
6.3
Details
```

7.1	目
Elevations	08
7.2	ADAPTIVE
Sections	HABITATS
7.3	AGENDA
Details	

```
```

Introduction

```
```

Introduction
I_PLEXUS

```
```

I_PLEXUS

```
```



```
```

01 The Location \& Program

```
```

01 The Location \& Program
DECODING GRC \& ESTABLISHING THE HYBRID TYPOLOGY PROGRAM
DECODING GRC \& ESTABLISHING THE HYBRID TYPOLOGY PROGRAM
Micro site selection/ Context Visuals
Micro site selection/ Context Visuals
02 The Hybrid
02 The Hybrid
HYBRID - INTROSPECTION/ ELABORATION

```
```

HYBRID - INTROSPECTION/ ELABORATION

```
```



```
```

03 The Form

```
```

03 The Form
FORM DERIVATION
FORM DERIVATION
Parametric derivation - Hybrid Integration - Ecologicalintegration(Prototype - Envelopel Circulation/ Structural
Parametric derivation - Hybrid Integration - Ecologicalintegration(Prototype - Envelopel Circulation/ Structural
04 The Building
04 The Building
HYBRID ARTICULATION
HYBRID ARTICULATION
Site Plan - All Access level plans - Other floor plans
Site Plan - All Access level plans - Other floor plans
05 The Transformer
05 The Transformer
CONCLUSION
CONCLUSION
Sections - Elevations - Models

```
Sections - Elevations - Models
```

06 Adaptive Habitats - The Agenda

i_PLEXUS
 INTRODUCTION

- Spirit of time
- Speculative \& Future Argument
- Ecological Discourse
- Post pandemic Networked Hybrid Relevance
- Project Brief
- Aim \& Aspirations

DEFINING THE SPIRIT OF TIME

An attempt is being made to test a derivative ecological prototype in an architectural construct. A program and a project is required for testing the prototype.

The spirit of time is defined and a program, derived and further defined from it for testing the ecological assembly in an architectural construct relevant to our times.

X-FACTOR

- X-Factor - a moderate complexity architectural program driven typological derived that has the notion of public.
- Using derivatives from precedent and antecedent to examine design constructs placed in an urban setting.
- A plug-in and the generator for a complex vertical 'hybrid'

$<$
N TRA

PROJECT BRIEF

PROJECT BRIEF

i_PLEXUS

```
PROJECT BRIEF


İPLEXUS

\section*{01 THE LOCATION \& PROGRAM}

DECODING GRC \& ESTABLISHING THE HYBRID TYPOLOGYPROGRAM
- Decode_Location Takeaways
- Micro Site Selection + Analysis

\section*{DECODE_LOCATION}


INTER
INTRA
CONNECTIONS SUPPORTED NEW MEANS OF TRANSPORT (UBER AIR CAB INCORPORATED


\section*{STRATIFICATION}

From a scattered typology we vertical stratify functions and move to a vertical city typology and moreover a vertical hybrid city - so that even if such an event takes place we can get everything we need in our homes itself

\section*{essentially}

ROGRAM AND TYPOLOGY FROM
FABRIC OF GCR
- past ruture
- PANDEMIC
- Population density increased over the past few years as a result of urbanization
- Economy, religion, living status and politics drives the demographics of the GCR- from its daytime population to the kind of urban fabric that is built over time

Golf Course Road
\begin{tabular}{l} 
Scattered Typology: \\
mmercial, Zetail, Recreational, F\&B, \\
Residential
\end{tabular}
Vertical Stretifcation
Verical -yb-id City a scattered typology we
vertical stratify functions and
move to a vertical city typology
and moreover a vertical hybrid
city - so that even if such an event
takes place we can get everything
we need in our homes itself
essentially

Pandemic is an event that has had a huge global impact, it's something that happens once a century.

But we speculate that because our ecology is faltering, natural balances are getting disturbed - such events might be a lot more frequent in the future

Hence, to survive such events we propose to build a vertical city, which is self-sufficient and have all city functions.

Impact of the pandemic on the demographic patterns - socio-cultural and economic, redefinition of the physical space due to the real \& virtual overlaps and emergent redundancies and hence the need for urban compactness and economy of activity distribution

\section*{MICRO SITE ANALYSIS}

\section*{SITE SELECTION + ANALYSIS swot + coordinates + photographic mapping}

\section*{PROPOSED SITES}

Site 1: Sunset Boulevard, Sector 42, Golf Course Road
Total Site Area: 4.22 acres

Site 3: Near Park Dr., DLF Phase V,
Sector 54, Golf Course Road
Total Site Area: 5.67 acres


Site 2: St. Thomas Marg, DLF Phase V Golf Course Road
Total Site Area: 3.25 acres

Site 4: Behind Parasvnath Exotica Sector 53, Golf Course Road



SElected site
Site 4: Behind Parasvnath Exotica Sector 53, Golf Course Road Total Site Area: 4.12 Acre Selected Site Area: 2.5 Acres

GLOBAL COORDINATES Longitude - 2826'28.66"N Latitude - 7705'53.43"Eir

\section*{MICRO SITE ANALYSIS}

SITE SELECTION + ANALYSIS photographic mapping + visual connections + adjacencies


\section*{MICRO SITE ANALYSIS}

SITE ANALYSIS accessibllity + connections + bullt


Due to a very dense urban fabric of the Golf Course Road, the noise is also more as we go closer to the metro line. However, as the distance increases, the access to visual, aural and physical connections is reduced to more private spaces and esidence
The networking on Site 4 is continuous and hence maintains interactions and activities on the road; also helps in commuting and movement of pedestrians.

\section*{NOLLI MAP}

The density of built spaces on Site 4 is lesser as compared to other sites as there is still development for upcoming projects and construction. Hence, built spaces are lesser and connecting roads and networks are more


Radius \(=1.7 \mathrm{~km}\)


Site 4: Behind Parasvnath Exotica,

Total Site Area: 4.12 Acre Selected Site Area: 2.5 Acres

0


MICRO SITE ANALYSIS
SIEAMAMSMICROCLIMATE+PHYSICALCHARACTERISTICS


WIND PATH ANALYSH


Site 4: Behind Parasvnath Exotica,
SELECTED SITE
Sector 53, Golf Course Road Total Site Area: 4.12 Acre Selected Site Area: 2.5 Acres

Climate - The prevailing climate in Golf Course Road is known as a Local Steppe Climate
Rainfall - There is little rainfall throughout the year. This climate is considered to be BSh
Temperature - The average is \(24.9^{\circ} \mathrm{C} \mid 76.8^{\circ} \mathrm{F}\)
Rainfall - Max.: July, Aug \& Sept
Least: Jan, Feb, Mar, April, May, Oct, Nov \& Dec The avg. amount of annual precipitation is: 642.0 mm



VEGETATION
1. Neem
(Azadirachta
indica)
2. Dhau (Anogeissu
latifolia)
3. Cuscuta

FLORA AND FAUNA
1. Brahmi (Bacopa Monnieri)
2. Gugal (Commiphora Wightii)
. Dardpaat (Bryophyllum Pinnatum)
4. Agave


I_PLEXUS

\section*{SITE ANALYSIS demographics}


POPULATION
It plays a very important role in the progress of an hybrid. Since, the denser the urban population, the more successful the hybrid functions vertically, which is also the case here


USER GROUPS
drivers of horizontal space
The map shows the drivers that divide the spaces and population on the basis of these factors. Occupation is the biggest driver of this urban fabric


\section*{SYSTEMS IN NATURE}

Nature's way is intriguingly unique. Natural habitat when observed closely, reveal that natural formations possess high levels of seamless integration and a relatively stable equilibrium, a homeostasis, between interdependent elements.

To understand a mutually symbiotic relationship, we identified - Systems in Nature and further studied a System in Nature.

\section*{THE i PLEXUS}

\section*{EC010 GY NATURALSYSTEM - TERMITE HILLS}

To understand a mutually symbiotic relationship, we identified - Systems in Nature and further studied a System in Nature.

Tectonic and computational integrations embedded into intrinsic systemic structure
- Adaptation and alignment to the ecological catalysts
- Adherence to the mimesis of the natural systems, that are not only consumerist in occupation of the habitat but also are producers that allows a mutually inclusive relationship to emerge.

PRIMARY GENERATIVE ARCHITECTURAL SYSTEM = STRUCTURE \& MATERIAL SYSTEM >>> NATURAL ENTITY CONTIGUOUS WITH THE DEFINITIONS OF THE SYSTEM = TERMITE MOUNDS
 A METRIC TON OF DIRT TO BUILD MOUNDS THAT CAN REACH 5 M AND HIGHER.



Geometric Attributes
- Shape - Tall; Thin; Wedged; Titled
- Mass/Volume- 1.5 g to 22.1 g
- \({ }_{\text {Scale/Proportions }} \mathbf{2 2 . 1 5}\) - Scale/Propo
- Colour - Brown; Beige; Red

\section*{}



ORDER
MORPHOLOGY PRINCIPLES
Compositional Attributes
- Material - Aggregates (sand + faeces) + Adhesive (saliva + moisture
- Colour - Brown; Beige; Red
- Texture-Smooth + Compact

Tectonic Attributes
- Malleability - No
- Flexibility - Yes
- Rigidity - Yes
- Elasticity - No
- Strength - Yes
- Organisation Logic Mechanism for Cooling (Cellar to Chimney)
Analytical Understanding Ventilation \& Ecology

MATHEMATICS

Algorithm for design of the morphological construct
Derivation results in Derivation results in proving that the
height of the mound height of the mound
and the radius of its base depend on the volumetric flux of odour


ECOLOGICAL FACTORS
Ecological Performance
- Food and Nutrition - Influenced by various atmospheric factors Colony Organiz

Highly organized and integrated unit
Colony Formation \& Development - associated with high atmospheric humidity
se transients. Th Venilation - Termites use trosillating they have a method to harness that to ventilate their mounds. Increase fertility and plant growth, improve soil quality, provide habitation space to many other organisms.

\section*{THE i PLEXUS}

\section*{=C0 G A G G GREGATE STRUCTURES}
TAKEAWAYS FROM TERMITE HILLS - FORM (TECTONICS) + FUNCTION (ECOLOGICAL)
\[
\mathrm{FORM} \longrightarrow \mathrm{AGGREGATESTRUCTURES}
\]

- Structures made from reusable aggregates requiring no binding agent.
- Aggregates are omnipresent in the concrete production industry, yet are rarely deployed in an unbound form.
- Aggregate architectures are made from designed injection-molded granulates which self-solidify.
- It is a ground-breaking construction method uses the potential of loose, designed granulates that can interlock and consequently require no additional binding agent
- They are fully recyclable and adaptable to almost any site constraints.


An architectural prototype building and a showcase for the current developments in computational design and robotic fabrication for lightweight timber construction.
The newly developed timber construction with beech plywood plates offers not only innovative architectural possibilities; it is also highly resource efficient, with the load bearing plate structure being just 50 mm thin.
ROBOTICALLY FABRICATED LIGHTWEIGHT TIMBER SHELL
- PROTOTYPICAL ARCHITECTURE - how one components was developed and then repeated multiple times to form the structure/ envelope
- AGGREGATION of one - hexagonal plate - to form the entire structure
- COMPUTATIONAL DESIGN \& ROBOTIC FABRICATION of each component (plate) and its assembly on site
- MATHEMATICS \& ORGANISATION of the hexagonal plates
- MATERIAL (beech plywood plates) \& JOINERIES (finger Joint) used and developed robotically - making the structure lightweight yet cable of taking load and acting as a shear wall system.
SOURCE: www.architecturaldigest.com; www.achimmenges.net

Computational Design Process


İPLEXUS

video: how termites enrichthe ecosystem
```

THE i_PLEXUS
EC010GMDERIVATIONS + ECOLOGICALPROTOTYPE 1.0 + 2.0
DERIVATIONS + REFERENCES FROM SYSTEM FOR PROTOTYPE DEVELOPMENT
PROTOTYPE = TO SUSTAIN THE MUTUALLY SYMBIOTIC RELATIONSHIP

```


Derived using all References - ANALOG MODEL


\section*{THE i＿PLEXUS \\ ECOLOEMECOLOGICALPROTOTYPE \(2.1+2.2\)}


FINAL AGGREGATE FOR PROTOTYPE


PROTOTYPE 2.2


DODECAHEDRON
12 PENTAGONAL FACES
30 EDGES
20 VERTICES

Pentagon to Dodecahedron－PLAN
R305mm－

Pentagon to Dodecahedron－ELEVATION
FIBONACCI DODECAHEDRON



PENTAGON－DODECAHEDRON
Angle of Rotations： \(\cos ^{-1}(-1 / 5 \vee 5) m=116.56\) degrees
 the same number of polygons abut each vertex
－Cosmic meaning－dodecahedron－universe
－PROPERTIES \＆CONSTRUCTION

Three types of topological interlocking of Three types of topological interlocking
dodecahedra，T1 T1，T1 Tl3．（© Vera Viana）

Relief structure 11－1，1986．Relief structure 1E－2，1985．Relief structure
1R－1，1993．（O VG Bild－Kunst，Bonn 2018）
 branchi
2018）
－STACKING／AGGREGATION OF DODECAHEDRONS
12 regular pentagons form the dodecahedron，which is one of the 5 Platonic solids．These are built using congruent regular polygons so that

Regular tessellations of space possible only for cubes．Dodecahedrons stack but do not pack densely．

\section*{THE i PLEXUS}

\section*{EC0L0GYECOLOGICALPROTOTYPE 2.2.1 + \(2.2 .2+\) FORM \(1-4\)}


\section*{THE i PLEXUS}

EC010GMMECHANICALASSEMBLY - MATHEMATICS + COMPONENTS


VOLUME DODECAHEDRON = 12 PYRAMIDS w/ PENTAGON as their base HEIGHT OF PYRAMID Using Pythagoras theorem,

Height \(=V\left(R^{2}-r^{2}\right)\), where \(R\) is the radius of the dodecahedron and \(r\) is the radius of each pentagon.
VOLUME OF (1) PYRAMID \(=(\) Base Area \(\times\) Height \() / 3\)
SO, VOULME OF (1) DODECAHEDRON = VOLUME OF (1) PYRAMID \(\times 12\)
\(=[(\) Base Area \(\times\) Height \() / 3] \times 12\)
\(=4\) (Base Area \(x\) Height)
\begin{tabular}{|c|c|c|}
\hline PROTOTYPE & \begin{tabular}{l}
Type 1: DODECAHEDRON OF SIDE \(=134 \mathrm{~mm}\) \\
Type 2: DODECAHEDRON OF SIDE = 268 mm
\end{tabular} & \\
\hline SURFACE AREA & Type 1: DODECAHEDRON OF SIDE = 134 mm & \[
\begin{aligned}
& =\text { SURFACE OF AREA OF (1) PENTAGON } \times 12 \\
& =(5 / 2) \times \mathrm{s} \times a \times 12 \\
& =5 \times \mathrm{s} \times \mathrm{a} \times 6 \\
& =30 \times 134 \mathrm{~mm} \times 8.6 \mathrm{~mm} \\
& =34,750 \mathrm{sq} . \mathrm{mm} \\
& =3.47 \mathrm{sq} . \mathrm{cm}
\end{aligned}
\] \\
\hline & Type 2: DODECAHEDRON OF SIDE = 268 mm & \[
\begin{aligned}
& =\text { SURFACE OF AREA OF }(1) \text { PENTAGON } \times 12 \\
& =(5 / 2) \times 5 \times \times \times 12 \\
& =5 \times 5 \times \times 6 \\
& =30 \times 268 \mathrm{~mm} \times 34.5 \mathrm{~mm} \\
& =2,78,028 \mathrm{sq} . \mathrm{mm} \\
& =27.8 \mathrm{sq} . \mathrm{cm}
\end{aligned}
\] \\
\hline VOLUME & Type 1: DODECAHEDRON OF SIDE = 134 mm & \begin{tabular}{l}
Full Volume \(=18.44 \mathrm{cu} . \mathrm{Cm}\) \\
Hollow Space Inside = \(13.92 \mathrm{cu} . \mathrm{Cm}\)
\end{tabular} \\
\hline & Type 2: DODECAHEDRON OF SIDE = 268 mm & \begin{tabular}{l}
Full Volume \(=147.5 \mathrm{cu}\). Cm \\
Hollow Space Inside = 119.74 cu. Cm
\end{tabular} \\
\hline
\end{tabular}


MATERIALITY
\begin{tabular}{|c|c|c|c|c|}
\hline TIMBER & METAL & GLASS & ACTIVATED SOLAR FACADE & SAB SKIN \\
\hline  &  & \[
17
\] &  &  \\
\hline TYPE = PINE (6 MM THK.) + PLYWOOD PLATES (3 MM & TYPE = STAINLESS STEEL MENDING PLATES + SCREWS & TYPE \(=\) TOUGHNED GLASS (8-10 MM THK.) & TYPE = METTALIC & TYPE \(=\) ETFE + ALGAE \\
\hline
\end{tabular}

JOINERIES


RULE OF GROWTH AND DEPTH

GROWTH


X 1


Pentegon \(\rightarrow\) Dodech \(\rightarrow\) MODIFICATION STRUCTURE
COMPONENTS
VIDEO: AGGREGATION PROCESS ITERATION 1


PERSPECTIVE VIEW


DEVELOPMENT
```

MATERIAL SYSTEM

```

front elevation


SIDE elevation


FORM-AL ITERATION S POSSIBLE ARCHITECTURAL FORMS MODULAR PROTOTYPE

íPLEXUS

\section*{THE i _PLEXUS}

ECOLOGY


ELEVATION

PLAN



SECTION

hollow dodecahedron to wireframe dodedecahedron - connection detail
 GUSSET PLATE CONNECTION

THE i_PLEXUS
ECOLOGY physicalprototyping


STRUCTURAL SYSTEM
MATERIAL SYSTEM
MATERIAL - IVORY SCALE - 1:20


MATERIAL - ABS (ACRYLONITRILE BUTADIENE
STYRENE)
TECHNIQUE
- 3 D

PRINTING


THE TERMITE HILL DERIVED ARTIFICIALLY INTELLIGENT CONNECTIVITY HUB TILE (AGGREGATE STRUCTURE)

ECOLOGICAL MACHINE ECOLOGICAL MACHINE was an interrogation to test the capacity of an architectural construct to be 'productive' mutually symbiotic

The TACH TILE aspired to be an ecological machine, mutually symbiotic in the co-existence of habitats. It was a test project to interrogate the natural system mimesis, aggregate structure prototype, programmatic components and physical contextuality that has been now evolved further and tested on a larger scale, context and program in the form of i_PLEXUS


\section*{THE i _PLEXUS}

\section*{ECOLOGY prototype-ecological exchange}

The interrogation for testing out the prototype was done through articulating the ecological exchange in the project. The AGGREGATE STRUCTURE PROTOTYPE tried to be mutually inclusive in its attitude towards the environment \& tries to establish an equal consumer-producer relationship with its environment.

\section*{}
FUNCTIONS


\title{
02 THE HYBRID
}
- Definition
- Variants
- Evolution
- Attributes
íPLEXUS

\section*{EMERGENT HYBRIDS definition + variants + evolution + attributes}

HYBRID COMPONENTS
"(VERTICAL) HYBRIDS ARE (TALL) BUILDINGS WHICH HAVE THE MIXED-USE GENE IN ITS GENE CODE, THAT REVITALIZES THE URBAN SCENE AND SAVES SPACE" - STEVEN HOLL

\section*{WHAT IS A HYBRID BUILDING?}

A hybrid is the most effective way to bring different types of activity to spaces at all times throughout the day. It is achieved by mixing different functions within the same buildingthe mixed-use building, where multiple uses are not only mixed together, but interact with each other and enrich each other.

\section*{ACCESSIBILITY HYBRID}
- A hybrid building also provides a lot of scope for access - visual or physical, that keeps the users connected vertically and horizontally with the urban fabric.
- The accessibility hybrid controls how permeable or porous a building is by keeping private and public access limited.
- It also strategically adapts to the ever-changing ecology and offers various ecological functions as well.
- Increase of access points leads to an increase of public space, more interaction and 'networking' in the building.
- Redefinition of public, semi-public and private spaces as well as circulation throughout the building.

 and other functional constraints.


\section*{EMERGENT HYBRIDS hybrid matrix + generating mechanism}
\begin{tabular}{|c|c|}
\hline SYSTEM & = S \\
\hline ACCESIBILITY & = A \\
\hline \multicolumn{2}{|l|}{CODE for Hybrid = AS} \\
\hline \multicolumn{2}{|l|}{LEVELS} \\
\hline Ground & = G \\
\hline Mid & = M \\
\hline Top & = \({ }^{\text {T }}\) \\
\hline \multicolumn{2}{|l|}{DIRECTIONS} \\
\hline North & = w \\
\hline East & = \(x\) \\
\hline South & = y \\
\hline West & = z \\
\hline \multicolumn{2}{|l|}{HYBRID ITERATIONS} \\
\hline \multicolumn{2}{|l|}{AS1GwMwTw} \\
\hline \multicolumn{2}{|l|}{AS1GxMxTx} \\
\hline \multicolumn{2}{|l|}{AS1GyMyTy} \\
\hline \multicolumn{2}{|l|}{AS1GzMzTz} \\
\hline
\end{tabular}

LOGIC/ METHODOLOGY Manipulation in the number of access points in a building at three planes (ground, mid, top) and four directions ( \(w, x, y, z\) ). Redefinition of public, semi-public and private spaces on the basis of access points - their location as well as no.s.
SCRIPT: Script generated on Grasshopper using formulated code and matrix - culling cubes (for making the hybrid tower); attractor point (for setting up access points) \& colour swatches (for public, semi-public, private segregation).
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
COMBINATIONS \\
Access from \\
points
\end{tabular} & \begin{tabular}{l} 
NUMBER \\
OF \\
POSSIBLE \\
ITERATION \\
S
\end{tabular} & SAMPLE CODE
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
ACCESS \\
POINTS NO.S
\end{tabular} & ITERATION CODE & \begin{tabular}{l} 
ACCESS \\
POINTS NO.S
\end{tabular} & ITERATION CODE \\
\hline 4 & ASGwGxGyGz & 2 & ASGwM \\
\hline 4 & ASTwTxTyTz & 5 & ASGyGzMTwTx \\
\hline 4 & ASMwMxMyMz & 6 & ASGwGxGyGzMTw \\
\hline 12 & ASGwGxGyGzMwMxMyMzTwTxTyTz & 5 & ASGwTwTxTyTz \\
\hline 6 & ASGwGyMwMyTwTy & 5 & ASGwMwMxMyMz \\
\hline 4 & ASGwGyTwTy & 8 & ASGwGxGyGzTwTxTyTz \\
\hline 9 & ASGwGxGyGzMwTwTxTyTz & 6 & ASGyMwMzTxTyTz \\
\hline 5 & ASGwGzMwTwTx & 9 & ASGwGyMxMyMzTwTxTyTz \\
\hline 4 & ASGwGzMwTw & 9 & ASGwGxGyGzMxMyMzTyTz \\
\hline 3 & ASGwMxTy & 7 & ASGwGxGyGzMwMyTx \\
\hline 7 & ASGxGyGzMwMxTyTz & 3 & ASGzMxTz \\
\hline 8 & ASGxGyGzMwMyTxTyTz & 10 & ASGwGxGyGzMxMyMzTwTxTz \\
\hline 10 & ASGwGxGyGzMxMzTwTxTyTz & 6 & ASGxGzMwMyTxTz \\
\hline 11 & ASGxGyGzMwMxMyMzTwTxTyTz & 4 & ASGyMwMyTy \\
\hline
\end{tabular}


ITPLEXUS

\section*{EMERGENT HYBRIDS \\ 
 \\  TOP VIE W \\ i_PLEXUS \\ }

\section*{EMERGENT HYBRIDS takeaways}
i_PLEXUS is an accessibility hybrid that integrates its flexible programmes with the help of the networking of the spaces through the circulation that it offers. It is merely a product of creating better opportunities for the public realm to interact and communicate through the AI DRIVEN HYBRID. It responds to changing social, technological and ecological urban condition that are experienced in an urban intensity within the building through its connections. The Golf Course is an artery that caters to a civilized movement of pedestrians as well as the transportation and hence, i_PLEXUS aims to achieve that within its verticality.

HYBRID (OF) I_PLEXUS = ACCESSIBILITY + PROGRAM + CIRCULATION...... (STRUCTURE + MATERIAL + SERVICES + EXPERIENCE + USER GROUP + ECOLOGICAL)

\section*{PROJECT RULE BOOK}
i_PLEXUS

\section*{MICRO SITE ANALYSIS \\ PROJECT RULE BOOK}

PROJECT =
OCATION =
AREA
BUILTUP =
G.C.

BLUE
FLOORS
EIGHT

SITE DIMENSIONS:
A to \(B=140.6 \mathrm{M}\)
B to C \(=91.68 \mathrm{M}\)
C to D \(=65.81 \mathrm{M}\)
to E \(=148.98 \mathrm{M}\)
E to \(\mathrm{A}=39.24 \mathrm{M}\)

\section*{SETBACKS:}
\(A B ; B C=12 \mathrm{M}\)
CD; DE; EA = 9 M
ORIENTATION = N-S

\section*{i_PLEXUS}

Sector 53, Golf Course Road, Gurugram, Haryana 2.5 ACRES (10,117 SQ M)

45,000 SQ M
MAX. \(30 \%\) ( 2500 SQ M
\(70 \%\) of SITE AREA
G + 24, BASEMENT
107 M



ELECTRICAL SHAF
pLUMBING SHAFT
A/C SHAFT
FIRE SHAFT
STP
AHU
MECHANICAL TRANSFER FLOOR
REFUGE FLOOR
SEWARAGE
WATER SUPPLY
ELECTRIC SUBSTATION

CORES NOS \(=2\)
PASSENGER LIFTS NO.S \(=8\) ( 2 X3 M; 15 PASSENGER EACH) - 4/CORE SEVICE LIFTS STAIRCASES FIRE STAIRCASES CORRIDORS ENTRY/ EXIT SITE - 1 VEHICULAR ENTRY + EXIT \& 2 PEDESTRIAN ENTRY + EXIT BUILDING - 1 FROM PORCH \& 2 FROM PLAZA

ECOLOGY
- Reinvigorating GREEN-BLUE-GREY balance by restoring dried water body, providing a stepped terrace plantation and creating a mini urban forest through planting of native flora of the region.
- Embedding ecological aggregate structure prototype into the built.

In nature, forms are the result of the intersections of system parameters and environmental constraints contiguous to their location. Form is merely a by-product, a derivative of natural behavioral formation It emerges as an effect exclusive to its particular ecological template

FORM DERIVATION

\section*{03 THE FORM}
- Parametric Voxel Form Derivation
- Age X-factor Integration
- Programmatic Accessibility Integration
- Hybrid Integration Circulation
- Natural System
- i_PLEXUS Ecosystem
íPLEXUS

\section*{FORM DERIVATION}

\section*{}

For evolving and testing out our ecological interrogation on a larger scale i.e., a skyscraper, FORM DERIVATION was done through a pixel/voxel approach morphed using parametric lines derived from site analysis and then integrated with our programmatic + accessibility + circulation hybrid generators, natural system of termite hills as well as overlayered with ecological aspirations which helped formulate OUR I PLEXUS BUILDING FORM, PROGRAMMATIC COMPONENTS and THE _PLEXUS ECOSYSTEM


Floor Plate \(=48 \times 48 \mathrm{~m}\)
1 Pixel \(=3 \times 3 \mathrm{~m}\)
Height of 1 floor \(=4.5 \mathrm{~m}\)
Height of 1 Pixel \(=4.5 \mathrm{~m}\)
Total no. of Pixels (per floor) \(=256\)
Total no. of Pixels (Massing) \(=5120\)

\section*{FORM DERIVATION}

\section*{MASS MORPHING}

SUN ANALYSIS
Sun Direction: \(126.18^{\circ}\) SE \(\uparrow\)
Sun Altitude: \(\quad 54.02^{\circ}\)
Sun Distance: 149.484 million km
Next Solstice: 21 Jun 2021 09:02 (Summer)
Sunrise: \(\quad 06: 12 \uparrow 84^{\circ}\) East
Sunset: \(\quad 18: 39 \uparrow 276^{\circ}\) West
WIND ANALYSIS
Speed: \(\quad 5 \mathrm{~m} / \mathrm{s}\)
Direction: Northwes
Temperature: \(\quad+31^{\circ} \mathrm{C}\)
Average Weather: Clear sky
ORIENTATION The building faces in southeast direction towards the golf course Road. The entrance and exit is from the same side. Most noise comes from the North \& Northwest direction and then ranges in a spiral form. Visual access from the building (level 17, 18, 19 \& 20) is of most importance as it gives a clear view of the DLF Golf Club.



POSITION \& PLACEMENT: South-East facing, Wind Impact from all sides- need for chamfering corners


VISUAL ACCESS: Lines of visual access intersecting

AURALACCESS: Waves of different frequencies

\section*{FORM DERIVATION}

\section*{MASS MORPHING Accessiblitity pVA physical visual oural}

WIND HARNESS: Rotating every 3 floors at 15 degree angle to avoid strong winds coming from North-West direction to tackle the problem of corners losing mass
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline S. No. & Level ( n ) & \begin{tabular}{l}
Side 1 \\
(S1)
\end{tabular} & \[
\begin{gathered}
\text { Side } 2 \\
(\mathrm{~S} 2)
\end{gathered}
\] & Side 3
(S3) & \begin{tabular}{l}
Side 4 \\
(S4)
\end{tabular} & Side 5 (S5) & \[
\begin{gathered}
\text { Side } 6 \\
(56)
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \text { Side } 7 \\
\text { (S7) }
\end{array}
\] & Side 8
(S8) & Angle of Torsion \\
\hline 1 & Level 00 & 18 & 18 & 21 & 21 & 18 & 18 & 21 & 21 & 15 degree \\
\hline 2 & Level 01 & 21 & 15 & 24 & 18 & 21 & 15 & 24 & 18 & 15 degree \\
\hline 3 & Level 02 & 24 & 12 & 27 & 15 & 24 & 12 & 27 & 15 & 15 degree \\
\hline 4 & Level 03 & 27 & 9 & 30 & 12 & 27 & 9 & 30 & 12 & 30 degree \\
\hline 5 & Level 04 & 30 & 6 & 33 & 9 & 30 & 6 & 33 & 9 & 30 degree \\
\hline 6 & Level 05 & 33 & 3 & 36 & 6 & 33 & 3 & 36 & 6 & 30 degree \\
\hline 7 & Level 06 & 36 & 0 & 39 & 3 & 36 & 0 & 39 & 3 & 45 degree \\
\hline 8 & Level 07 & 0 & 33 & 0 & 30 & 0 & 33 & 0 & 30 & 45 degree \\
\hline 9 & Level 08 & 3 & 39 & 3 & 39 & 3 & 39 & 3 & 39 & 45 degree \\
\hline 10 & Level 09 & 6 & 36 & 6 & 36 & 6 & 36 & 6 & 36 & 60 degree \\
\hline 11 & Level 10 & 9 & 33 & 9 & 33 & 9 & 33 & 9 & 33 & 60 degree \\
\hline 12 & Level 11 & 12 & 30 & 12 & 30 & 12 & 30 & 12 & 30 & 60 degree \\
\hline 13 & Level 12 & 15 & 27 & 15 & 27 & 15 & 27 & 15 & 27 & 75 degree \\
\hline 14 & Level 13 & 18 & 24 & 18 & 24 & 18 & 24 & 18 & 24 & 75 degree \\
\hline 15 & Level 14 & 21 & 21 & 21 & 21 & 21 & 21 & 21 & 21 & 75 degree \\
\hline 16 & Level 15 & 24 & 18 & 24 & 18 & 24 & 18 & 24 & 18 & 90 degree \\
\hline 17 & Level 16 & 27 & 15 & 27 & 15 & 27 & 15 & 27 & 15 & 90 degree \\
\hline 18 & Level 17 & 30 & 12 & 30 & 12 & 30 & 12 & 30 & 12 & 90 degree \\
\hline 19 & Level 18 & 33 & 9 & 33 & 9 & 33 & 9 & 33 & 9 & 105 degree \\
\hline 20 & Level 19 & 36 & 6 & 36 & 6 & 36 & 6 & 36 & 6 & 105 degree \\
\hline 21 & Level 20 & 39 & 3 & 39 & 3 & 39 & 3 & 39 & 3 & 105 degre \\
\hline
\end{tabular}

BROAD TO NARROW: The structure grows level-wise and certain no. of voxels are removed on the basis of the form or eg.
The voxels on level 00, 01, 02 are not removed, voxels on level \(03,04,05\) are removed in bands of 6 m and then 9 m and then back to 3 m



ACCESSIBILITY: Removal of Voxels


VISUAL ACCESS: Displacement of Voxels


AURAL ACCESS
The noise analysis for the site shows that in 1 km radius, the noise keeps ranging from high to low to medium and then high again

\section*{ACCESS}

There is an entrance provided at the SE direction. Access for metro provided at levels 3 and 4. Access for uber air on the terrace

\section*{VISUAL ACCESS}

Visual access from Golf Course Road is given more importance on ground level and the \(20^{\text {th }}\) level as it provides the view of the whole
golf course road and the DLF Golf Club

MASS MORPHING


I_PLEXUS

FORM DERIVATION
MASS MORPHING



( - -


İPLEXUS

\title{
MASS MORPHING hybrid system integration - circulation + arteries
}


The networking and integration in the hybrid is happening through intuitive arteries that help in the circulation of the building

NTEGRATION OF PROGRAMMES \(\quad \because:!\)
Through the artery, the programmes are integrated throughout the building building connections and spaces to access these different programmes
It also restricts the access whether visual or aural or physical access to control the permeability of the hybrid

HEART OF THE HYBRID

\section*{}

Through the plexus of these circulating nerves, they have become the heart of the hybrid which not only helps in adapting to weather conditions inside the building but also provides the networking for each Programme. The programmes are like flexible arrays that can then shift according to the situations that arise

\(\%\) of Users on GOLF COURSE ROAD


\(\%\) + Areas of Programs/ Typologies in NETWORK HYBRID VERTICAL CITY


\section*{EP\|CUR\|A FOR PROGRAM + SPATIALORGANISATION}

ARCHITECT: STUDIO XP
DEVELOPER: TDI INFRATECH
SITE AREA: 8,000 SQ M
FAR: 2
BUILT UP AREA: 4,000 SO M
GROUND COVERAGE: 50\%


१
 Hub of South Delhi, easily accessible by all residential and public \& right next to Outer Ring Road.

- 2 Main pedestrian entrances along the length + 1 Main one axis for vehicular movement
- Definite visual nodes
- Congregation spaces - well landscaped sunken courtyards
- The building is organised and spread more horizontally.
- Pedestrian activity is promoted by the humanising scale
- The open space are organised in such a way that they lead to the indoor spaces.
- The facade is linear and straight however, the planning and spatial organisation is staggered and helps maintain an element of surprise.

BUILDING PROGRAM
PROGRAMMATIC COMPONENTS
- Main Component/ Primary - CONNECTION (parking areas + direct walking connection from the metro station)
- Secondary - Retail + Recreational spaces (F\&B)
- Tertiary - Sunken Courtyards + Landscaped Walkways and Gardens + Services + Surface \& Basement Parking

SPATIAL ORGANISATION
SPATIAL ORGANISATION - NETWORKING


\section*{CYBERHEFOR PROGRAM + SPATIALORGANISATION}

ARCHITECT: HAFEEZ CONTRACTOR DEVELOPER: DLF
SITE AREA: 10.6 Ha FAR: 3.75
BUILT UP AREA: 4,00, 136 SQ M
GROUND COVERAGE: 39, 332 SQ M


LOCATION
RELEVANCE
- located nearby to the site
- SIMILAR CONCEPT OF A TRANSIT huB

- Multiple entrances (3) along the length
- Definite visual nodes are created for visitor orientation and collection - The excitement of the Store fronts - Organic growth pattern to the site, (rigor of a well-planned night-time urban environment with the flavours of a local souk or bazaar).


SAME
COMPONENTS
COMPONENTS ORGANIZATION AND HIERARCHY OF SPACES.

- The street flanked by F\&Bs is vibrant with pedestrian activity which is promoted by the humanising scale and appropriate treatment of the walkways with seating available at multiple intervals.
Staggered facade keeps the pedestrian interested. However, as the path ends abruptly, the commercial activity at the end is lesser.

SCHEMATIC CROSS SECTION

BUILDING PROGRAM
- Main Component/ Primary - OFFICES of top IT and Fortune 500 companies
- Secondary - Congregation and Circulation space (-Exhibit Area + Amphitheatre) + Commercial activity (F\&B + Retail)
- Tertiary - Open terraces + Services + Parking (Surface + Basement)

PROGRAMMATIC COMPONENTS

SPATIAL ORGANISATION


SPATIAL ORGANISATION - NETWORKING


FORM DERIVATION
MASS MORPM\|NG programmatic - areastatement + area analysis


0 O- ©
- © ©


İPLEXUS



i_PLEXUS



```

i_PLEXUS - VHC
NETWORK|NG Hierarchyof programs

```
necreatio
(i) (c) (2)
*


\section*{}



 ANCILLARY FUNCTIONS
 UTILITIES
AREA + VOLUMETRIC ANALYSIS PROGRAMMATIC FUNCTIONS
i_PLEXUS

```

NETWORKING 2d\& bobubblediagram

```

2 D SCALE + PROPORTION | PRIMARY SECONDARY TERTIARY | PUBLIC PRIVATE SEMI-PUBLIC | CONNECTIONS

 D connections |volume orspaces
\[
\begin{aligned}
& \text { ARCHITECTURAL } \\
& \text { 16BAR-1DS32P }
\end{aligned}
\]

FORM DERIVATION

\section*{MASS MORPHING morph 6.o natural system + intutitive tectonics}

THE FORM
FORM DERIVATION


FINAL FORM

FLOOR SLABS \(=300 \quad \mathrm{MM}\) (EXOSKELETON STRUCTURAL SYSTEM)
G + 24
TOTALHEIGHT: 107 M
FLOOR TO FLOOR HEIGHT: 45 M

íPLEXUS


THE FORM

íPLEXUS

íPLEXUS

\section*{THE TACH_TILE>>> transforms>>> i_PLEXUS}


TESTPROJECT1-AI DRIVENTRANSITHUB WELL AS METROCONNECTIVIT

BULT
G +5 TERRACE
G+5 \& HEIGAC


COLOGY_ADAPTIVENETWORKED CITY INTEGRATING ALL CITYFUNCTIONS AS WELLAS UBER AIR CAB

SITEAREA: 2.5 ACRES
BUILT UPAREA: 45000 SQ M
\(+24\)


ITPLEXUS

\section*{THE i_PLEXUS \\ ECOSYSTEM}


\section*{ECOSMSTEEOLOGICALSYSTEM \&FUNCTIONING}

Even before any ecological layering, the prototype's individual aggregate has an ecological function of its own.
The hollowness of the timber + etfe dodecahedrons provide:
A degree of insulation - Temperature Lag - Induce Temperature Control
Due to the space inside the dodecahedron.


SPACE INSIDE
TESSELATING SPACES activated solar façade


WIREFRAMED DODECAHEDRONS

SABS SKIN SYSTERNI

ACTUATORS

Sunlight inaturali Regil. Ins"de building :hrough A

Ho lows space

\section*{Sunlight \& humidity (natural)} Internal temp. Concitions througr Al Faster growth of algae Lsing energy from AS:

Organ'c waste
Waste fron tre entire building

\section*{\(8^{+2}\)}
functions

SHADI\G
CONFORTA3LE THERNAL AND YISUAL Environment
- power gevera-ion
- ingulation
- temperature lag + con-rol
- HEATING, COOLING, HJMIDITY CONTRO
- ADAPT, REEUALTE \& CON-ROL
- real time ecoloeical response

DY\AMIC AUTOMATION

- -REATMENT OF organic WASTE - CLEAN SOJRCE OF ミNERGY


Restoring dried up WATER BODY which 1. Reinvigorates GREY GREEN BLUE BALANCE 2. Creates a MICROCLIMATE for the entire site and especially the SOUTH side plaza 3. Fish Cultivation 4. Algae which supports prototype
Creating a MINI URBAN FOREST by 1. Plating native flora on and around site 2. Stepped Terrae from Water body to Site Level with plantations 3. Waste Recycling and Power Generation
i_PLEXUS

\section*{i_PLEXUS}

\section*{ECOSYSTEM - PLANTING PALETTE}


íPLEXUS

\section*{i_PLEXUS \\ STRUCTURAL DEVELOPMENT}

EXOSKELETON STRUCTURAL SYSTEM
WITH PRIMARY MATERIALS - TIMBER STEEL GLASS
\(F L O O R\) SLABS \(=300 \quad\) MM THICK
(EXOSKELETON STRUCTURAL SYSTEM)
G + 24
TOTAL HEIGHT: 107 M
FLOOR TO FLOOR HEIGHT: 45 M



\section*{i_PLEXUS \\ STRUCTURAL DEVELOPMENT}

EXOSKELETON STRUCTURAL SYSTEM
WITH PRIMARY MATERIALS - TIMBER STEEL GLASS

FLOOR SLABS \(=300 \quad \mathrm{MM}\) THICK
(EXOSKELETON STRUCTURAL SYSTEM)
G + 24
TOTALHEIGHT: 107 M
FLOOR TO FLOOR HEIGHT: 45 M



\section*{i_PLEXUS \\ STRUCTURE / MATERIAL / ECOLOGICAL HYBRID}

The ETFE supporting roof is formed from glulam timber beams which are bolted together with nuts to for rectangular bays
ant giass elevator Glazing with light transmission properties altered when voltage, light or heat is applied

CURTAIN WALL
Toughened Glass (Vision): Triple glazed, with low-e or reflective coatings. Framing of aluminum. Resistance to air and water

WIND HARNESS + TURBINES To facilitate and avoid cracks on corners due to strong winds. Wind turbines made of steel, fiberglass, cast iron \& aluminum

ACTIVATED SOLAR FACADE
Fitted in tessellating spaces, provides comfortable visual \& thermal environment as well a power generation

Timber dodecahedron treated for building a digester \& gas holder along with supporting components - inlet/outlet pipe etc.


\section*{IMBER ORGANIC SKYPORTS}

The ETFE supporting roof is formed from glulam timber beams which are bolted together with nuts to for rectangular bays

\section*{SKY BRIDGES}

The tensile membrane structure is used for movement of pedestrians. It is constructed in timber, as well as the walkways

\section*{PROTOTYPE SKIN}

Aggregate structure made from timber dodecahedrons having own stacking ability reinforced by timber dowels. Tessellating spaces fitted with Activated Solar Façade Panels

\section*{S. A. B. SKIN}

Self Activated Bio-Climatic Strategy Skin provides Heating, Cooling, humidity control \& regulation. Real time ecological response

\section*{HOLLOW DODECAHEDRONS}

Provid
Insulation,
2.

Temperature lag \& control due to
hollowness hollowness

DEVELOPMENT

íPLEXUS

\section*{i_PLEXUS}

DEVELOPMENT
G + 24
OTAL HEIGHT: 107 M
FLOOR TO FLOOR HEIGHT: 45 M


HYBRID ARTICULATION

\section*{04 THE BUILDING}
- Site Plan
- All Access level plans
- Other floor plans
i_PLEXUS - DESIGN ARTICULATION
PROGRAMMATIC HYBRID program delineation


SITEAREA: 2.5 ACRES
BUILT UPAREA: 45000 SQ M
G+24 SCALE \(1: 200\)
TOTAL HEIGHT: 107 M

KEYPLAN





\section*{i_PLEXUS - ARTICULATION}

S\|TEMNWITH GROUND FLOOR PLAN

N
\[
\mathrm{O}_{0}^{\text {SCALE }} \mathbf{1 : 2 0 0} \times \underbrace{}_{10}
\]


A SERVICE CORE
A1-4 LIFT
A5 STAIRCASE
A6 PRESSURISATION SHAFT
A7 FHC
A8 ELECTRICAL ROOM + SHAFT
A9 AHU ROOM + HVAC SHAFT
A10 HANDICAPPED WASHROOM
A11 FEMALE WASHROOM + SHAFT
A12 MALE WASHROOM + SHAFT
B residential service core
B1-2 LIFT
B3 STAIRCASE
stalrcase
STAIRCASE
ESCALATORS
i_PLEXUS


KEY PROGRAMMATIC PLAN


\section*{_PLEXUS - ARTICULATION}

\section*{FIRST FLOOR level oi}
\begin{tabular}{ll}
\hline \(23-31\) & SHOPS \\
\hline 32 & ADMIN \\
\(13+14\) & \begin{tabular}{l} 
ANCHOR STORES LVL 2 \\
\(33+33 A\)
\end{tabular} \\
\hline \(34+34 A\) & \begin{tabular}{l} 
GROCERY STORE LVL. \(1+\) \\
STORAGE
\end{tabular} \\
\hline 35 & RESTAURANT + ECO. TERRACE \\
\hline 36 & KIOSK \\
\hline
\end{tabular}
service core
residential service core
STAIRCASE
staircase
ESCALATORS

\section*{© 0 잉 \\ - © 웅}

```

lolllllll

```
SITEAREA: \(2 \cdot 5\) ACRES
BUILTUP AREA: 45000 SQ M
G+5 \& TERRACE
TOTAL HEIGHT: 28.5 M

FIRST FLOOR AREA = 2274 SQ M


KEY PROGRAMMATIC PLAN


\section*{_PLEXUS - ARTICULATION}


KEY PROGRAMMATIC PLAN


\section*{i_PLEXUS - ARTICULATION}

THIRD FLOOR level os
\begin{tabular}{|c|c|}
\hline \(50+51\) & SHOPS \\
\hline 52 & ADMIN \\
\hline \(53+53 \mathrm{~A}\) & CAFÉ \& LOUNGE + ECO. TERRACE \\
\hline \(44+44 \mathrm{~A}\) & FOOD COURT LVL. 2 + ECO TERRACE \\
\hline 54 & RESTAURANT + BAR \\
\hline 55 & CO-WORKING SPACE \\
\hline \(56+56 \mathrm{~A}\) & YOUTH \& ADULT CENTER + ECO. TERRACE \\
\hline \[
\begin{aligned}
& 57+57 \mathrm{~A}- \\
& 57 \mathrm{E}
\end{aligned}
\] & RELIGIOUS GATHERING SPACE (HINDU; MUSLIM; SIKH; CHRISTIAN) + ECO. TERRACE \\
\hline 58 & SERVICES \\
\hline
\end{tabular}
rvice core
\begin{tabular}{ll} 
A & SERVICE CORE \\
B & RESIDENTIAL SERVICE CORE \\
C & STAIRCASE \\
D & STAIRCASE \\
E & ESCALATORS
\end{tabular}

0

SITEAREA: 2.5 ACRES
BUILT UPAREA: 45000 SQ M
G+24
TOTAL HEIGHT:
107
THIRD FLOOR AREA = 2147 SQ M




KEY PROGRAMMATIC PLAN


FOURTH FLOOR AREA = 2491 SQ M

\section*{_PLEXUS -ARTICULATION \\ FIFTH FLOOR level os \\ \begin{tabular}{|ll|}
\hline \(77-78\) & RECEPTION \& WAITING AREA \\
\(79-83\) & CLIIICS \\
\(84+84 A\) & \begin{tabular}{l} 
MULTU-PURPOSE ADAPTIVE \\
SPACE + SOLATION WARD FOR \\
QUARANTINE
\end{tabular} \\
\hline 85 & PHARMACY \\
\hline 86 & WAREHOUSE \\
\hline 87 & CAFÉ \\
\hline
\end{tabular}}
service core
residential service core
STAIRCASE
staircase

\section*{© O O 0 \\ - © \({ }^{\circ}\) ©}

\section*{0}
\[
=\operatorname{lem}_{5}^{\text {SCALE } 1: 200}
\]

SITEAREA: \(2 \cdot 5\) ACRES
BUILT UPAREA: 45000 SQ M
G+ 24
TOTAL HEIGHT: 107 M
FIFTH FLOOR AREA = 2466 SQ M




\section*{SPA \& SAUNA}
\(90+90 \mathrm{~A}+\quad\) INDOOR TENNIS PLAY AREA + WATER/ EQUIPMENT
CHANGING ROOM
91 GYM
92 LOCKER ROOM FEMALE
93 LOCKER ROOM MALE
\begin{tabular}{|c|c|}
\hline 88 & CAFÉ \\
\hline 89 & SPA \& SAUNA \\
\hline \(90+90 \mathrm{~A}+\) & INDOOR TENNIS PLAY AREA + \\
\hline 908 & WATER/ EQUIPMENT + CHANGING ROOM \\
\hline 91 & GYM \\
\hline 92 & LOCKER ROOM FEMALE \\
\hline 93 & LOCKER ROOM MALE \\
\hline 94 & INDOOR SWIMMING POOL \\
\hline \(95+95 \mathrm{~A}\) & RESTAURANT + ECO. TERRACE \\
\hline 96 & SKINCARE SHOP \\
\hline 97 & SPORTSWEAR SHOP \\
\hline 98 & CAFÉ \\
\hline
\end{tabular}

99+99A SALON + ECO. TERRACE
A SERVICE CORE
B RESIDENTIAL SERVICE CORE
\(\begin{array}{ll}\text { C } & \text { STAIRCASE } \\ \text { D } & \text { STAIRCASE }\end{array}\)
\(\begin{array}{ll}\text { C } & \text { STAIRCASE } \\ \text { D } & \text { STAIRCASE }\end{array}\)

SITEAREA: \(2 \cdot 5\) ACRES
BUILTUP AREA: 45000 SQ M
G+24
TOTAL HEIGHT: 107 M
SIXTH FLOOR AREA = 2269 SQ M
2269 SQ M

0 O) ©

i_ PLEXUS - ARTICULATION
SEVENTH FLOOR levelot
\begin{tabular}{|l|l|}
\hline 100 & \begin{tabular}{l} 
INDUSTRIAL WAREHOUSE LVL \\
1
\end{tabular} \\
\hline 101 & \begin{tabular}{l} 
INDOOR SPORTS AREA BALL \\
102
\end{tabular} \\
\hline 103 & \begin{tabular}{l} 
INDOOR SPORTS AREA \\
RACQUET
\end{tabular} \\
\hline \(104+104 A-\) & \begin{tabular}{l} 
STORAGE SPACE \\
OFFICE + MANAGER ROOM + \\
CONTROLER ROOM + \\
SUPERVISOR ROOM
\end{tabular} \\
\hline \(105+105 A\) & STAFF ROOM + ECO. TERRACE \\
\hline \(106+107\) & SHOPS \\
\hline 108 & PACKAGING \\
\hline
\end{tabular}
service core
residential service core STAIRCASE
(1) 우 이 숭

programmatic legend

\[
=\operatorname{lam}_{5}^{\text {SCALE 1:200 }} \times=_{10}
\]

SITEAREA: \(2 \cdot 5\) ACRES
BUILTUP AREA: 45000 SQ
G+24
TOTAL HEIGHT: 107 M
SEVENTH FLOOR AREA = 2193 SQ M

i_PLEXUS - ARTICULATION
EIGHTH FLOOR Level os
\begin{tabular}{|ll|}
\hline 100 & \begin{tabular}{l} 
INDUSTRIAL WAREHOUSE LVL \\
2
\end{tabular} \\
\hline 109 & STORAGE SPACE \\
110 & BANK \\
\hline 111 & PICKING OF PRODUCTS \\
\hline 112 & REFUGE AREA \\
\hline 113 & EQUIPMENT ROOM \\
\hline 114 & SUPERVISOR BOOTH \\
\hline \(115+115 A+\) & GOVERNMENT SERVICES \\
116 & OFFICE + ECO. TERRACE \\
\hline
\end{tabular}

SERVICE CORE
RESIDENTIAL SERVICE CORE stalrcase

\section*{© 0 이 \\ - © \({ }^{\circ}\)}

\section*{V}

SITEAREA: \(2 \cdot 5\) ACRES
BUILT UPAREA: 45000 SQ M
G+24 HEIGHT: 107 M
EIGTH FLOOR AREA = 2287 SQ M



\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{i PLEXUS - ARTICUL} \\
\hline \multicolumn{2}{|l|}{} \\
\hline 129-130 & OFFICES \\
\hline 131 & BUSINESS \& MEDIA CENTER \\
\hline 132 & OFFICE \\
\hline 133 & SHOP \\
\hline \(134+134 \mathrm{~A}\) & LIBRARY + LOUNGE \\
\hline \(135+135 \mathrm{~A}\) & LEGAL SERVICES \\
\hline \(136+136 \mathrm{~A}\) & CYBER CAFÉ / CO-WORKING SPACE \\
\hline \(137+137 \mathrm{~A}\) & OFFICE + STORAGE \\
\hline 138-139 & meeting room \\
\hline 140 & PANTRY \\
\hline
\end{tabular}
\begin{tabular}{ll} 
A & SERVICE CORE \\
B & RESIDENTIAL SERVICE CORE \\
D & STAIRCASE
\end{tabular}


0 © © 0 ..... - © ©
0 ..... 
\begin{tabular}{l} 
SIT \\
BU1 \\
\hline B
\end{tabular}

\begin{tabular}{ll|}
\hline 141 & 3 BHK APARTMENT \\
142 & 2 BHK + STUDY APARTMENT \\
143 & 5 BHK APARTMENT \\
144 & 5 BHK APARTMENT \\
145 & 3 BHK APARTMENT \\
\hline
\end{tabular}

SERVICE CORE
residential service core

\section*{© 0 잉 \\ \(\cdots\) 우웅}

\section*{V}
\[
{ }_{0}^{\text {SCALE }}=1: 200
\]
\[
\begin{aligned}
& \text { SITEAREA: 2.5 ACRES } \\
& \text { BUILTUPAREA: } 45000 \text { SQ M }
\end{aligned}
\]
\(\qquad\)
\[
\text { TWELFTH FLOOR AREA = } 1519 \text { SQ M }
\]



THIRTEENTH FLOOR
\begin{tabular}{|ll|}
\hline 146 & SHOP \\
\hline 147 & OFFICE \\
\hline 148 & MEETING ROOM \\
\hline 149 & LIBRARY + LOUNGE \\
\hline 150 & OFFICE \\
\hline 151 & 4 BHK APARTMENT \\
\hline
\end{tabular}
service core
B RESIDENTIAL SERVICE CORE

\section*{© 0 이 0 \\ 우웅}

 SITEAREA: 2.5 ACRES
BUILTUPAREA: 45000 SQ M G+24
Otal height: 107 M
THIRTEENTH FLOOR AREA \(=753 \mathrm{SQ}_{\mathrm{C}}^{\mathrm{C}} \mathrm{M}\)
programmatic legen

UILT UP AREA: 45000 SQ M

LEVEL 13


KEYPROGRAMMATICPLAN

i_PLEXUS
i_plexus - articulation
FOURTEENTH FLOOR
LEVEL 14
\begin{tabular}{ll}
\hline 152 & OFFICE \\
153 & 2 BHK APARTMENT \\
154 & 2 BHK APARTMENT \\
155 & 2 BHK + STUDY APARTMENT \\
156 & 4 BHK APARTMENT \\
157 & 4 BHK APARTMENT \\
\hline
\end{tabular}
service core
residential service core
(1) 아) 이 수

우우웅


\section*{i_PLEXUS - ARTICULATION}

FIFTEENTH FLOOR
\begin{tabular}{ll}
\hline 158 & OFFICE \\
159 & LEGAL SERVICES \\
\hline 158 & OFFICE \\
\hline \begin{tabular}{l} 
161+161A \\
+161 B
\end{tabular} & \begin{tabular}{l} 
THEATRE LVL \(1+\) CONCESSION \\
STANDS
\end{tabular} \\
\hline A & SERVICE CORE \\
B & RESIDENTIAL SERVICE CORE \\
\hline
\end{tabular}

\section*{(1) 앙 이 숭 \\ (9) (ㄷ) 앙 \\ programmatic legend}

\section*{0}

\[
\begin{aligned}
& \text { SITEAREA: } 2.5 \text { ACRES } \\
& \text { BUILTUPAREA: } 450000
\end{aligned}
\]
G+24 HEIGHT: 107 M


LEVEL 15
\begin{tabular}{|ll|}
\hline 158 & OFFICE \\
159 & LEGAL SERVICES \\
\hline 158 & OFFICE \\
\hline
\end{tabular}
(


\section*{SIXTEENTH FLOOR}



106

\section*{i_PLEXUS - ARTICULATION}

\section*{SEVENTEENTH FLOOR \\ ```
LEVEL 17
```}


I_PLEXUS

NINTEENTH FLOOR
LEVEL 19

\section*{ \\ TWENTIETH FLOOR}

110
íPLEXUS

\section*{TWENTY FIRST FLOOR level 21}
(1) 아) iㅣ 숭
(ㄷ) (ㄷ) 앙

\section*{0}
\[
\begin{aligned}
& \text { SITEAREA: 2.5 ACRES } \\
& \text { BUILTUPAREA: } 45000
\end{aligned}
\]
G+24 HEIGHT: 107
TWENTY FIRST FLOOR AREA \(=84 \underset{\mathrm{~S}}{\mathrm{Q}} \mathrm{a}_{\mathrm{M}}^{37}\)

\section*{PLEXUS - ARTICULATION}

\section*{TWENTY SECOND FLOOR}

\section*{(1) 아 쇼 숭 \\ (ㄱ) (ㄷ) 앙}

\section*{RROGRAMMATIGLEGEND \\ 0 \\ \(\qquad\) \\ bulltarea: 2.5 acres \\ G + 24 \\ OTAL HEIGHT: 107 M \\ WENTY SECOND FLOOR AREA \(=46+25\)}

\section*{PLEXUS - ARTICULATION}

TWENTY THIRD FLOOR
\(\begin{array}{ll}174 & \text { ENTRY + SECURITY } \\ 175 & \text { TICKETING + ANCILLARY } \\ & \text { FUNCTIONS }\end{array}\)

\section*{SERVICE CORE}

RESIDENTIAL SERVICE CORE

\section*{}

오 (ㄷ) 웅

\section*{0}
\[
{ }_{0}^{\text {SCALE }}=1: 200
\]
\[
\begin{aligned}
& \text { SITEAREA: } 2 \cdot 5 \text { ACRES } \\
& \text { BUILTUPAREA: } 45000
\end{aligned}
\]
(4500 SQ M
G 24
07 M
WENTY THIRD FLOOR AREA = 251 SQ M

\section*{_PLEXUS - ARTICULATION}

\section*{TWENTY FOURTH FLOOR}
uber air cab landing

SERVICE CORE
residential service core

\section*{ \\ 우 (웅}

\section*{0}
 SITEAREA: 2.5 ACRES (45000 SQ M G+24

WENTY FOURTH FLOOR AREA = 251 SQ M

0

SITEAREA: \(2 \cdot 5\) ACRES
BUILTUPAREA: 45000 SQ M
SCALE 1:200
\(\mathrm{Cm}_{5} \times \mathrm{Cl}_{10}\)
0

GOTAL HEIGHT: 107 M

SUILTUUA:AREA: 45000 SQ M
G+24 HEIGHT: 107 M
\(\xrightarrow{\text { SCALE } 1: 200}\)
0
JTWENTY FOURTHFL TTWENTYTHIRDFL. TWENTY SECONDFL TWWENTYFIRSTFL. JTWENTIETHFL. JNiNTEENTHFL. delghteenthfl. SEVENTEENTHFL. dsixteenthfl.
\[
\sqrt{\text { FIFIFTEENTHFL }} \text {. }
\]

SITEAREA: \(2 \cdot 5\) ACRES
BUILTUPAREA: 4500
\(\mathrm{G}+24\)
+ 24
OTAL HEIGHT:
107

0

\section*{iPPLEXUS}

\section*{i_PLEXUS}

i_PLEXUS

\section*{THE TRANSFORMER i_PLEXUS - EVOLUTION}

ECOLOGICAL EXCHANGE ecological wall section
The i_PLEXUS is indeed tries to be mutually inclusive in its attitude towards the environment \& tries to establish an equal consumer-producer relationship with its environment.
i_PLEXUS is an AI driven hybrid ecology that uses Golf Course Road's urban fabric for its successful functioning through numerous arteries. It aims to advance and progress with simpler solutions for a creating a flexible vertical city - an Adaptive \& Ecological Vertical Hybrid Ecology which works as a networked city. A speculative quest into an archetype of a TRANSFORMABLE, ADAPTIVE NETWORKED HYBRID which is ecologically mutually symbiotic and 'productive' in the co-existence of habitats and programmatically a self-sufficient and sustainable vertical city.

\section*{AD APTIVE HABITATS STUDIO}
- Interrogated and built an understanding of the role of the elements in influencing and informing design - form \& order, program, movement, structure, material, services and technique
- Tested Generative capacities of the elements in derivation of prototypical models that could possibly reflect on built habitat's interactions with the environment.
- Evolved 'alternate' forms of architectural sensibility and aesthetic that strengthened our understanding of the elements.
- Inculcated an ability to rethink emergent architectural and urban formations of our time so as to further speculate re-generative and resilient constructs capable of transforming an existing situation (THE PANDEMIC), adaptable to future change (SIMILAR EVENTS) and able to incorporate technological inventions and innovations that aims to revolutionize our current social patterns and our relationship with ecological surroundings: its biodiversity, resources, sprawl, agility and flexibility.
- Expanded the field of possibilities by exploiting speculative thought as a catalyst to synchronize the digital and material worlds.
- EXPLORED THE FULL COMPLEXITY OF A COMPREHENSIVE ARCHITECTURAL ASSEMBLY IN AN URBAN ENVIRONMENT that is mutually symbiotic and 'productive' in the co-existence of habitats.

\section*{THANK YOU}
```

